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Energy Distribution in a Neutral Gas of Point Vortices
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An analytical formula for the energy distribution of a neutral gas of point vor-
tices is obtained. Good agreement with the numerical results of Campbell and
O’Neil is found.
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In ref. 1 the following problem was considered: Point vortices are thrown
randomly and statistically independently into a rectangular cell and their
positions are periodically duplicated over the plane. Point vortices generate
some fluid flow. The kinetic energy of the flow per cell depends on the
vortex positions, and, thus, is random. We are interested in the probability
density function of energy. Knowing this function one can determine sta-
tistical characteristics of the vortex motion provided the latter is ergodic
(see, for example, ref. 2). Campbell and O’Neil (1) computed the probability
density function of the energy numerically by casting 160 point vortices
randomly into a square box with periodic boundary conditions and then
evaluating the energy of each configuration. In this note we present an
analytical formula for the probability density function of the energy and
compare it with the corresponding numerical results of Campbell and
O’Neil.

Let an equal number of positive and negative point vortices be posi-
tioned in a cell C. Then the stream function of the flow obeys the equation

Du=− c C
N

a=1
[d(x−r+a )−d(x−r

−
a )], (1)



where r+1 , ..., r
+
N and r −1 , ..., r

−
N are the positions of positive and negative

vortices, respectively, c is the vortex intensity, and D is Laplace’s operator.
The function u and its derivatives are periodic.

This problem admits a variational formulation: one has to minimize
the functional

I(u)=
1
2
(Au, u)−(l, u),

(Au, u)=F
C
(Nu)2 d2x,

(l, u)=C
N

a=1
(l0(ra), u),

(2)

where r is a pair (r+, r −) and

(l0(r+, r −), u)=F
C
c[d(x−r+)−d(x−r −)] u(x) d2x. (3)

The minimum is sought on the subspace of H1(C) which consists of perio-
dic functions. Unfortunately, the variational problem is ill-posed as stated,
for

inf
u
I(u)=−.,

because the kinetic energy of the flow generated by each individual point
vortex is infinite. To have a sensible variational problem one has to regu-
larize the functional by either smoothing the d-function or by adding
higher derivatives with small parameter E to the functional

(AEu, u)=F
C
[(Nu)2+E2(NNu)2] d2x. (4)

Here (NNu)2 — “
2u

“xa“xb
“
2u

“xa“xb
, Greek indices run values 1,2 and summation over

repeated indices is implied. The constant E plays the role of a vortex core
radius. The way of regularization does not matter since we look for results
which do not depend on the core radius. We found the regularization (4)
more convenient.

Note that the functional IE(u) is invariant under a shift by a constant.
To have a unique minimizing function we impose an additional constraint

OuP=0, (5)
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where O.P denotes the space averaging over the cell, OuP= 1
|C| >C u d2x, |C|

being the area of the cell.
Let r be the set (r+1 , r

−
1 , ..., r

+
N , r

−
N). Energy E is a function of r and,

thus, is a random variable. We are seeking the probability density function
of the energy. Denote by Ê1 the vortex self-energy, to be defined later, and
by EŒ=(E−2NÊ1)/N the interaction energy divided by the number of
disjoint unlabled neutral pairs, N. We claim that the probability density
function of EŒ, fN, E(EŒ), which depends on N and E, has the limit when we
let NQ. first and then EQ 0, and we determine this limit explicitly.

The general problem of finding the probability density function of the
minimum values of stochastic functionals was solved in ref. 3. For the rea-
der’s convenience we recall the following result from ref. 3.

Consider a problem of minimizing the following quadratic functional:

I(u)=1
2 (Au, u)−(l, u). (6)

Here (Au, u) and (l, u) stand for the quadratic and linear parts of the
functional I(u), u being an element of some Hilbert space. The linear func-
tional is random, i.e. it depends on an ‘‘event’’ r, where r is an element of
some set on which a probabilistic measure is given. We consider random
linear functionals (l, u) of a special type: (l, u) is a sum of N values of a
linear random functional l0

(l, u)=C
N

a=1
(l0(ra), u),

where ra are independently and identically distributed random variables.
Denote by Ê the quantity

Ê=−min
u
I(u)/N. (7)

It turns out that the probability density function of Ê, fN(Ê), does not
depend on N for large N, and can be determined by an asymptotic for-
mula (3)

f(Ê)=
1
2pi

F
i.

−i.

e Êz

`F(z)
dz, (8)

where

F(z)=D
.

k=1

11+ z
lk
2 , (9)
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and lk are the eigenvalues lk of the following eigenvalue problem

Aj=lBj, (10)

with the operator B defined by

(Bj, j)=M((l0, j)2).

M stands for the mathematical expectation. In the infinite product (9) each
eigenvalue is counted as many times as its multiplicity is. The integral (8) is
taken over the imaginary axis. Note that by changing the variable,
uQ u`N, formula (7) can be written in the form

Ê=−min
u

51
2
(Au, u)−

1

`N
C
N

a=1
(l0(ra), u)6 .

This is the form which was used in ref. 3.
The function of a complex variable f̂(z)=1/`F(z) is the character-

istic function of the probability density function of the energy. In the case
under consideration it can be found explicitly. Indeed, for the linear func-
tional l0 from (3) one easily finds that

Bj=
2c2

L2
j.

Here we used the fact that computing of mathematical expectation is
equivalent to averaging over the cell, M(.)=O.P, and we took also into
account the condition (5). The eigenvalue problem (10) now reads

−Dj+E2D2j=l
2c2

L2
j. (11)

It is convenient to make this equation dimensionless by introducing
dimensionless coordinates and a dimensionless parameter Ē according to

x̄=
x
L
, Ē=

E

L
.

Then (11) takes the form

− D̄j+Ē2D̄2j=l2c2j. (12)
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Here D̄ is Laplace’s operator in dimensionless x̄-coordinates. The periodic
solutions of (12) are given by

j=ae i2pk · x̄, k ¥ Z −2. (13)

We denote by Z −2 the 2D square lattice with unit spacing, in which the point
k=(0, 0) is excluded. Obviously, the function (13) for k=(0, 0) is not an
eigenfunction due to (5). Substituting (13) into (12) we obtain

|k|2+Ē24p2 |k|4=lk
c2

2p2
.

Each point of the lattice Z −2 corresponds to one eigenfunction. We may set
this correspondence, for example, in the following way. Consider a point
(k1, k2) in the first quadrant, k1 > 0, k2 > 0. It is accompanied by associate
points (k1, −k2), (−k1, −k2), (−k1, k2) in three other quadrants giving
the same eigenvalue lk. We set

j1=a1 sin 2p(k1x̄1+k2x̄2) for k=(k1, k2),

j2=a2 cos 2p(k1x̄1−k2x̄2) for k=(k1, −k2),

j3=a3 cos 2p(k1x̄1+k2x̄2) for k=(−k1, −k2),

j4=a4 sin 2p(k1x̄1−k2x̄2) for k=(−k1, k2).

For k1=0, k2 ] 0 we put j1=a1 sin 2pk2x̄2 for k2 > 0 and j2=
a2 cos 2pk2x̄2 for k2 < 0. Similarly, we put j1=a1 sin 2pk1x̄1 for k1 > 0,
k2=0 and j2=a2 cos 2pk1x̄1 for k1 < 0, k2=0. The coefficients ai of the
eigenfunctions are chosen from the normalization condition Oj2iP=1.
Introducing the following quantities

e=2pĒ, e0=
c2

2p2
, l̄k=lke0,

we get for l̄k the simple equation

l̄k=|k|2+e2 |k|4.

The function F(z) and the probability density of the energy f(Ê)
depend on the parameter e. To emphasize this in our notation we attach
the label e to each of these functions and write Fe(z) and fe(Ê), respec-
tively. It is convenient to write Fe(z) in the form

Fe(z)=e −2he(z).
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Then

f(Ê)=
1
2pi

F
i.

−i.
e Êz+he(z) dz. (14)

For the function he(z) we have

he(z)=−
1
2
ln Fe(z)=−

1
2

C
k ¥ Z

−

2

ln 11+ z
|k|2+e2 |k|4

2 . (15)

It is shown in the Appendix B that, if eQ 0, the function he(z) in (14) can
be replaced by the function

he(z) ’ f0(z)−2Ê1z, (16)

where

f0(z)=−
1
2

C
k ¥ Z

−

2

5 ln 11+ z
|k|2
2− z
|k|2
6 , (17)

and Ê1 corresponds to the self-energy of a single vortex (the notion of
vortex self-energy is discussed in more details in Appendix A)

Ê1=C
k

1

4l̄k
= C
k ¥ Z

−

2

1
|k|2+e2 |k|4

. (18)

More precisely,

F
i.

−i.
e Êz+he(z) dz− F

i.

−i.
e Êz+f0(z)−2Ê1z dzQ 0 (19)

as eQ 0 if the interaction energy, EŒ=Ê−2Ê1, is kept fixed. In other
words, the probability density function of the interaction energy, fe(EŒ),
has the limit as eQ 0, and this limit is equal to

f(EŒ)=
1
2pi

F
i.

−i.
eEŒz+f0(z) dz=

1
2p

F
.

−.
e iEŒy+f0(iy) dy. (20)

Note that the self-energy Ê1 tends to infinity as eQ 0, and, in fact, we
make ‘‘an infinite shift of energy’’.

The computation of the integral (20) can be conducted in the following
way. Since the series (17) converges slowly, we calculate f0(z) by summing
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up the terms with k inside a circle of radius + (|k| < +) and approximating
the rest of the series by a double integral

−
1
2

C
|k| > +

5 ln 11+ z
|k|2
2− z
|k|2
6 % −1

2
F
|k| > +

5 ln 11+ z
|k|2
2− z
|k|2
6 d2k.

This integral can be found exactly. It is equal to

−
p

2
F
.

+
2
5 ln 11+z

t
2−z
t
6 dt=−p

2
5 (z++2) ln +2

z++2
+z6 .

Figures 1 and 2 shows the results of calculations of Re f0(iy) and
Im f0(iy) for +=1, 2, 40. The convergence is fast, and for + > 3 we practi-
cally obtain the limit curve for f0(iy). The graph of f(EŒ) calculated
according to (20) is shown in Fig. 3. To obtain f(Ê) we have to shift this
function to the right by 2Ê1. Note that the mean value of EŒ is zero, which
is simply the consequence of the periodic boundary condition. In Fig. 3 we
show also the distribution of EŒ obtained numerically by Campbell and
O’Neil. (1) The energy unit in ref. 1 is chosen as

eC−O=
c2

2p
,

Fig. 1. Approximate calculation of function Re f0(iy): a) +=1, b) +=2 (dashed line) c)
+=40 (bold line).
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Fig. 2. Approximate calculation of function Im f0(iy): a) +=1, b) +=2 (dashed line) c)
+=40 (bold line).

i.e. Campbell and O’Neil computed the energy Ẽ which differs from EŒ by
the factor p: Ẽ=EŒ/p. Thus, if we denote the probability density function
of Ẽ by f̃(Ẽ), then

f(EŒ)=
1
p
f̃ 1EŒ
p
2 .

The bold line in Fig. 3, which correspond to the formula (20), is in good
agreement with the numerical results of Campbell and O’Neil.

The support by the Volkswagen-Stiftung through the RiP program at
Mathematisches Forschungsinstitut Oberwolfach is gratefully acknowledged.

Fig. 3. Probability density function of interaction energy: a) +=1 (dashed line), b) function
(20) (bold line), c) numerical results of Campbell and O’Neil (points).

888 Le and Berdichevsky



APPENDIX A. VORTEX SELF-ENERGY

Consider a flow with an infinite periodic set of point vortices and a
neutralizing constant background vorticity. The stream function of the
flow G is the periodic solution of the equation

DG− E2DG=− cd(x−r)+
c

|C|
(21)

Each cell contains one vortex. The neutralizing background vorticity c/|C|
is added to make the solution consistent with the periodic boundary condi-
tions.

Let us expand G in the Fourier series with respect to the eigenfunc-
tions jk,

G(x−r)= C
k ¥ Z

−

2

uk(r) jk(x). (22)

Plugging (22) in (21) we obtain

uk(r)=
1
2clk

jk(r),

The energy of the flow per cell is given by the formula

Energy=
1
2
F
C
[(NG)2+E2(NNG)2] d2x

=
1
2
F
C
G(−DG+E2D2G) d2x

=
1
2

C
k ¥ Z

−

2

1
2clk

F
C
jk(r) jk(x) 1cd(x−r)−

c

|C|
2 d2x

=
1
4

C
k ¥ Z

−

2

1
lk
j2k(r). (23)

The energy does not depend on the vortex position in the cell due to the
periodicity of the flow. Putting in (23) r=0 and taking into account that
jk(0)=1 we obtain

Energy=
1
4

C
k ¥ Z

−

2

1
lk
=
e0
4

C
k ¥ Z

−

2

1

l̄k
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This energy referred to the unit e0 coincides with the self-energy Ê1 defined
by (18). Note that Ê1 Q. as ln 1/e.

APPENDIX B. PROOF OF (19)

We first note that the integral (14) converges absolutely for all Ê > 0.
Indeed, substituting z=iy in (14) we have

fe(Ê)=
1
2p

F
.

−.
e iÊy+he(iy) dy. (24)

Thus

|fe(Ê)| [
1
2p

F
.

−.
eRe he(iy) dy. (25)

Taking in (15) only terms with |k|=1 we obtain the inequality

Re he(iy) [ − ln 11+
y2

(1+e2)2
2 ,

which shows that the right-hand side of (24) is finite. Therefore, for eQ 0,
the integral (24) can be replaced by the integral over y ¥ (−1/`e, 1/`e).
In this interval we decompose he(z) into two parts

he(z)=fe(z)−2Ê1z,

fe(z)=−
1
2

C
k ¥ Z

−

2

5 ln 11+ z
|k|2+e2 |k|4

2− z
|k|2+e2 |k|4

6 , (26)

where Ê1 was given by (18).
The function fe(iy) is regular within the interval (−1/`e, 1/`e) and

converges to

f0(iy)=−
1
2

C
k ¥ Z

−

2

5 ln 11+ iy
|k|2
2− iy
|k|2
6 (27)

as eQ 0. To show this we use the identity

qe(z)=fe(z)−f0(z)=−
1
2
z2 C
k ¥ Z

−

2

F
e
2

0

dẽ
(|k|2+ẽ |k|4+z)(1+ẽ |k|2)2

, (28)
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which is obtained by differentiating (26) with respect to ẽ=e2 and then
integrating over the interval ẽ ¥ (0, e2). The left-hand side of (28), for all
z=iy, y ¥ (−1/`e, 1/`e), is bounded above by

|qe(iy)| [
1
2
y2 C
k ¥ Z

−

2

F
e
2

0

dẽ

`(|k|2+ẽ |k|4)2+y2 (1+ẽ |k|2)2

[
1

`2
y2 C
k ¥ Z

−

2

F
e
2

0

dẽ
|k|2+ẽ |k|4+|y|

=
1

`2
y2 C
k ¥ Z

−

2

1
|k|4

ln 11+ e
2 |k|4

|k|2+|y|
2 .

In order to give an upper bound for the series standing in the right-hand
side of this inequality we decompose it into

C
k ¥ Z

−

2

1
|k|4

ln 11+ e
2 |k|4

|k|2+|y|
2= C

|k| < +

1
|k|4

ln 11+ e
2 |k|4

|k|2+|y|
2

+ C
|k| > +

1
|k|4

ln 11+ e
2 |k|4

|k|2+|y|
2=A+B.

Since ln (1+x) < x we have for A

A [ C
|k| < +

1
|k|4

e2 |k|4

|k|2+|y|
[ e2 C

|k| < +

1
|k|2
.

We strengthen this inequality by replacing the sum by a double integral
over k, 1 < |k| < +, giving

A [ e2 F
1 < |k| < +

1
|k|2
d2k [ 2pe2 ln +. (29)

B is bounded above by a double integral

B [ F
|k| > +

1
|k|4

ln 11+ e
2 |k|4

|k|2+|y|
2 d2k

which can be calculated exactly in the polar coordinates. As the result the
following inequality holds for B

B [ p
ln (1+e2+2)

+2
+pe2 ln

1+e2+2

e2+2
. (30)
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Choosing +=1/e and combining (29) and (30), we see that

|qe(iy)| [
1

`2
y2(A+B) [ const

1
e
e2 ln

1
e
Q 0

as eQ 0. Thus, (19) holds true.
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